The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] rayleigh fading(94hit)

41-60hit(94hit)

  • QPSK Differential Space Time Coding on Different Unitary Matrices Sets and Initializations

    Jia HOU  Moon Ho LEE  

     
    LETTER-Coding Theory

      Vol:
    E89-A No:1
      Page(s):
    348-353

    This letter investigates a distinct set of complex unitary matrices for differential space time coding by using QPSK modulation. The numerical results show that the properly selection of the initial transmission matrix and the set of unitary matrices can efficiently improve the bit error rate (BER) performance, especially for the antennas correlated fading channel. The computer simulations are evaluated over slow and fast Rayleigh fading channels.

  • Joint Estimation of Doppler Spread and Carrier Frequency Offset for OFDM Systems

    Bin SHENG  Xiaohu YOU  

     
    LETTER

      Vol:
    E88-A No:11
      Page(s):
    3134-3136

    In this letter, a joint estimation algorithm of Doppler spread and frequency offset for OFDM systems in Rayleigh fading channels is proposed based on the autocorrelation function between the last part of the received OFDM signal and its copy in guard interval. It is shown by computer simulations that the proposed algorithm performs well for different Doppler spread values and carrier frequency offsets.

  • Performance of GMSK and Reed-Solomon Code Combinations

    LiDuan MA  David ASANO  

     
    PAPER-Communication Theory

      Vol:
    E88-A No:10
      Page(s):
    2863-2868

    This paper examines a coded Gaussian Minimum Shift Keying (GMSK) system which uses Reed-Solomon (RS) codes both in Additive White Gaussian Noise (AWGN) channels and Rayleigh fading channels. The performance of GMSK and RS code combinations is compared with the constraint that the transmitted signal bandwidth is constant. The coding gains were obtained using simulations and the best combination of GMSK and RS codes was found. The optimal code rates over AWGN and Rayleigh fading channels were also compared.

  • Iterative Adaptive Soft Parallel Interference Canceller for Turbo Coded MIMO Multiplexing

    Akinori NAKAJIMA  Deepshikha GARG  Fumiyuki ADACHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3813-3819

    In this paper, iterative adaptive soft parallel interference canceller (ASPIC) is proposed for turbo coded multiple-input multiple-output (MIMO) multiplexing. ASPIC is applied to transform a MIMO channel into single-input multiple-output (SIMO) channels for maximum ratio diversity combining (MRC). In the ASPIC, replicas of the interference are generated and subtracted from the received signals. For the generation of replicas with higher reliability, iterative ASPIC is proposed. It performs the iterative interference cancellation by feedback of the log-likelihood ratio (LLR) sequence obtained as the turbo decoder output. For iterative ASPIC, at the transmitter, the information sequence and parity sequence are transmitted from different antennas. In this paper, the achievable bit error rate (BER) performance, in a Rayleigh fading channel, for the turbo coded MIMO multiplexing with the proposed iterative ASPIC system is evaluated by computer simulation.

  • Performance of Closed-Loop Transmit Antenna Diversity with Channel Estimation Errors and Feedback Delay

    Nam-Soo KIM  Ye Hoon LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:11
      Page(s):
    3289-3294

    The effect of feedback delay and channel estimation error on closed-loop transmit diversity (CTD) systems is investigated in time-selective Rayleigh fading channels. Based on a minimum mean square error (MMSE) channel estimator, the variance of the estimation error is formulated in terms of fading index and the number of transmit antennas. A bit error rate (BER) expression for the CTD system is analytically derived as a function of channel estimation error, feedback delay, and fading index. It is shown that the BER performance of the CTD system improves as the length of training symbols increases and/or the frame length decreases. In the CTD system, more accurate channel estimation scheme is required to achieve its full gain as the number of employed transmit antennas increases. It is also found that the CTD system is applicable to the slowly moving channel environments, such as pedestrians, but not for fast moving vehicles.

  • Rate-Compatible Punctured Bit-Interleaved Coded Modulation for Mobile Satellite Communications

    Tadashi MINOWA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2082-2089

    Fading in mobile satellite communications severely degrades the performance of data transmission. It is commonly modeled with non-frequency selective Rayleigh fading. For this type of channel, a new structure for a bit-interleaved coded modulation (BICM) scheme is presented and evaluated to determine its effectiveness compared to previously proposed schemes. This scheme is referred to as rate-compatible punctured BICM (RCP-BICM), in that its BICM encoder is able to yield a wide range of data rates by using a punctured convolutional code obtained by periodically perforating parity bits from the output of a low-rate-1/2 systematic convolutional code. A trellis-coded modulation (TCM) scheme and a turbo TCM (TTCM) scheme are discussed and evaluated for comparison with the RCP-BICM scheme. Simulation results demonstrate that the RCP-BICM scheme with hard-decision iterative decoding is superior to the TCM scheme by 3 dB at a bit error rate (BER) of 10-5 over an Rayleigh fading channel, and comes at a BER of 10-5 within 1 dB of the TCM scheme over an additive white Gaussian noise (AWGN) channel.

  • Diagonal Algebraic Space Time Coding with 8-Star-PSK Signals

    Pingyi FAN  

     
    PAPER-Fundamental Theories

      Vol:
    E87-B No:8
      Page(s):
    2182-2188

    Diagonal algebraic space time (DAST) block codes was proved to achieve the full transmit diversity over a quasi-static fading channel and to maintain 1 symbol/s/Hz. When the number of transmit antennas employed is larger than 2, DAST codes outperform the codes from orthogonal design with the equivalent spectral efficiency. However, due to the limitation on the signal constellation with complex integer points, no good 3bits/symbol DAST block code was given previously. In this paper, we propose a general form of 8-star-PSK constellations with integer points and present some theoretical results on the performance of the equivalent 8-star-PSK modulations. By using our proposed 8-star-PSKs, we present a searching algorithm to construct DAST codes with 3 bits per symbol under some criteria and investigate their performances over flat Rayleigh fading channels. It is shown that (5,2) 8-star-PSK scheme has a comparable performance to conventional 8PSK over additive white Gaussian noise (AWGN) channel and the corresponding DSAT codes constructed can achieve significant performance gain over flat Rayleigh fading channel.

  • Serial Concatenation of Space-Time Trellis Code with Convolutional Code over Fast Rayleigh Fading Channel

    Moo Sam KIM  Je Gil KOO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:2
      Page(s):
    373-376

    This letter presents a new concatenated code and a new criterion for the new concatenated code in fast Rayleigh fading channel. The new concatenated code consists of the cascade of a new space-time trellis code (STTC) as an inner code and a new convolutional code as an outer code. The new criterion maximizes the minimum free distance for the new convolutional code and both the minimum trace and the average trace of distance matrix for the new STTC. The new concatenated code improves the frame error rate (FER) performance significantly with low complexity. The new STTC and convolutional code are designed so as to satisfy the new criterion for 4-state 4 phase shift keying (PSK). The results of the suggested concatenated code are obtained using two transmit antennas, and shown to be significantly superior to the new and existing STTCs. As the number of receive antennas increases, the performance of the new concatenated code significantly improves, for instance, reaches FER = 10-3 at signal-to-noise ratio (SNR) = 5.2 dB for four receive antennas. Note that the proposed concatenated code also improves significant FER performance by using only one receive antenna for high SNR.

  • An Equalization Technique for High-Speed-Mobile OFDM Systems in Rayleigh Multipath Channels

    Dongguo LI  Katsumi YAMASHITA  

     
    LETTER-Fundamental Theories

      Vol:
    E87-B No:1
      Page(s):
    158-160

    In mobile OFDM systems, sub-carriers orthogonality will be broken due to Doppler shift, and this results in inter-carrier interference (ICI). Many methods have been proposed to compensate for this, however, these methods won't be suitable for fast fading caused by high mobile speed. In this letter, we propose a novel sampling theorem based pilot symbol-aided technique which can not only estimate the channel fading envelope (CFE) accurately under high relative Doppler frequency (RDF) but also achieve lower BER than conventional methods. The validity of the proposed method is demonstrated by computer simulations.

  • Hybrid Concatenated Space-Time Coding Systems

    Bon-Jin KU  Jong-Moon CHUNG  Changeon KANG  

     
    LETTER-Fundamental Theories

      Vol:
    E86-B No:12
      Page(s):
    3614-3616

    The effects of hybrid concatenated space-time (HC-ST) codes applying iterative a posteriori probability (APP) decoding are investigated. The bit error rate (BER) and frame error rate (FER) performance of the iterative decoded hybrid Tarokh, Seshadri, Calderbank space-time (TSC ST) coded system under flat Rayleigh fading is analyzed. At the FER 10-2 level the results show that the serially concatenated space-time (SC-ST) codes provide a coding gain of 3 dB compared to the TSC ST codes, where an additional coding gain of 1 dB beyond the SC-ST code performance can be obtained applying the HC-ST coding topology.

  • Mean Capacity of MIMO Systems over Rayleigh Fading Channel

    Chunyan GAO  Ming ZHAO  Shidong ZHOU  Yan YAO  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E86-B No:12
      Page(s):
    3642-3645

    Two important lemmas on the determinant of random matrixes are deduced in this paper. Then based on these results, expression for the mean capacity of MIMO system over Rayleigh fading channels is obtained. This expression requires little calculation and is simple and efficient compared with conventional methods, and furthermore, it gives an explicit relation on the mean capacity of MIMO systems with antenna numbers and the relation of mean capacity with signal to noise ratio (SNR). Accuracy of this theoretic formula has been verified by computer simulation.

  • Iterative Kalman Channel Estimation and Parallel Interference Cancellation for Synchronous CDMA Mobile Radio Channels

    Shu-Ming TSENG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:6
      Page(s):
    1961-1966

    In this paper, we propose a new multistage (iterative) structure where Kalman channel estimation and parallel interference cancellation multiuser detection are conducted in every stage (iteration). The proposed scheme avoids the complexity of the decorrelator in front of Kalman channel estimator, and has better performance than the previous scheme.

  • Diversity Transform of N-DPSK with Decision-Feedback Differential Detection over Correlated Rayleigh Fading

    Fuh-Hsin HWANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1457-1461

    In this letter, we investigate a diversity scheme which employs a simple transform, symbol interleaving and decision-feedback differential detection (DF-DD) for differential phase-shift-keying signal transmission over correlated Rayleigh fading. The proposed scheme merits instinct time diversity within each transmitted block and thus presents patent resistance to fading. It is shown that the considered technique provides significant diversity gains in a correlated Rayleigh fading channel.

  • Performance Analysis of Channel Estimators for Forward Link W-CDMA under Multipath Rayleigh Fading Channels

    Seok-Jun KO  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1212-1223

    This paper presents a BER performance derivation considering imperfect channel estimation for a pilot-aided coherent forward link of W-CDMA system under multipath Rayleigh fading channels. In the forward link of the W-CDMA system, pilot signal is usually used for coherent demodulation. In this paper, the maximum likelihood estimator, Wiener filter, and moving average filter are applied to estimate the channel effect due to mobile speed and frequency offset. Then, we concentrate on determining optimal parameter values of the estimators such as the observation length, delay parameters for causal/non-causal filter, and filter resolution. Also it is verified that these parameters are closely associated with the performance, hardware complexity, and characteristics of OVSF code. In particular, effect of data rate and filter resolution on the BER performance is analyzed in more detail. In addition, we show the performance comparison between the estimators considering various imperfections. Finally, we verify the derived BER by using an extensive Monte-Carlo computer simulation.

  • Fast Calculation Algorithm and Error Performance of Multiple-Symbol Differential Detection over Fading Channels

    Shiro HANDA  Yusuke OKANO  Mingya LIU  Fumihito SASAMORI  Shinjiro OSHITA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1050-1056

    A novel fast calculation algorithm (FCA) for calculating the decision metric of the multiple-symbol differential detection (MSDD) considering the autocorrelation of a received sequence is proposed. In correspondence to the star quadrature amplitude modulation (QAM), the M algorithm is adopted to MSDD over Rayleigh fading channels, in order to reduce the number of search paths. The computational complexity of the decision metric can be greatly reduced by the proposed FCA and the M algorithm. Through computer simulations, it is confirmed that the symbol error rate (SER) performance of the MSDD considering autocorrelation is closer to that of the ideal coherent detection as the length of an observed sequence becomes larger over Rayleigh fading channels.

  • Multiple Access over Fading Multipath Channels Employing Chip-Interleaving Code-Division Direct-Sequence Spread Spectrum

    Yu-Nan LIN  David W. LIN  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    114-121

    Multiple access interferecnce (MAI) is a major factor limiting the performance of direct-sequence code-division multiple access (DS-CDMA) systems. Since the amount of MAI is dependent on the correlation among user signals, one way to reduce it is to reduce such correlation. In mobile multiuser communication, each user experiences a different time-varying channel response. This user-dependent characteristic in channel variation can be exploited to assist the separation of different user signals, in addition to the capability provided by the spreading codes. As the correlation among different user channels are expected to decrease with increase in time span, enhanced decorrelation among different users' signals can be effected by spacing out the chips of one modulated symbol in time. Thus we consider chip-interleaving DS-CDMA (CI-DS-CDMA) in this study. We investigate its performance through theoretical analysis and computer simulation. Employing only a slightly modified rake receiver structure, CI-DS-CDMA is shown to attain significant performance gain over conventional DS-CDMA, in multiple access communication over single- and multi-path fading channels, without complicated multiuser detection. CI-DS-CDMA also has a lower demand for short-term power control than conventional DS-CDMA, especially in one-path Rayleigh fading. Results of the theoretical analysis and the computer simulation agree well with each other.

  • An Application of Separate Coding to Space-Time Turbo-Coded Modulation

    Kohsuke HARADA  Shingo ATA  Ikuo OKA  Chikato FUJIWARA  

     
    LETTER

      Vol:
    E86-B No:1
      Page(s):
    380-383

    In this paper, the separate coding scheme is applied to space-time turbo-coded modulations (ST-TuCM). The separate coding for ST-TuCM uses the plural number of component encoders, each of which is a binary turbo encoder in the transmitter. The receiver has component decoders corresponding to the component encoders. The likelihood values derived by the component decoders are employed as a-priori information of transmitted signal from other transmit antennas in iterative demodulation-decoding. Simulation results under the fast Rayleigh fading channel show that separate coding and iterative demodulation-decoding improve the bit error rate performance.

  • Improved Space-Time Convolutional Code in Quasistatic Flat Rayleigh Fading

    Moo Sam KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:10
      Page(s):
    2341-2343

    It has been established that the criteria for space-time convolutional code (STCC) are based on the maximization of the minimum rank and the minimum determinant of distance matrix over quasistatic flat Rayleigh fading channel. This letter presents a new criterion, i.e., modified trace criterion which maximizes both the minimum trace and the average trace of distance matrix for a new STCC. A new STCC is systematically searched so as to maximize the minimum trace and the average trace, and shown to be superior to other known codes in quasistatic flat Rayleigh fading channel.

  • Variable Rate Error Correcting Code with Interleavered Puncturing Serially Concatenated Convolutional Codes

    Cha-Keon CHEONG  Kiyoharu AIZAWA  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    1987-1995

    This paper addresses a novel scheme for variable rate error correction coding with interleavered puncturing serially concatenated convolutional code. In order to obtain a variable coding rate, the bits of the outer coder are perforated with a given puncturing pattern, and randomly interleaved. The effect of interleavered puncturing on the overall coding performance is analyzed, and the upper bound to the bit error probability of the proposed coder is derived. Moreover, to evaluate the effectiveness of the proposed scheme some simulation results are presented with the iterative decoding procedure, in which the channel models of Rayleigh fading and additive white Gaussian noises are assumed.

  • Effect of Noisy Estimation on Turbo-Coded Modulation over Flat Rayleigh Fading Channels

    Tadashi MINOWA  Hideki IMAI  

     
    PAPER-Coding Theory

      Vol:
    E85-A No:10
      Page(s):
    2211-2219

    The effects of noisy estimates of fading on turbo-coded modulation are studied in the presence of flat Rayleigh fading, and the channel capacity of the system is calculated to determine the limit above which no reliable transmission is guaranteed. This limit is then compared to the signal-to-noise ratio required for a turbo-coded modulation scheme to achieve a bit-error-rate of 10-5. Numerical results are obtained, especially for QAM signals. Our results show that even slightly noisy estimates significantly degrade the theoretical limits related to channel capacities, and that an effective use of capacity-approaching codes can lower the sensitivity to noisy estimates, though noise that exceeds a certain threshold cannot be offset by the performance improvement associated with error-correcting capability.

41-60hit(94hit)